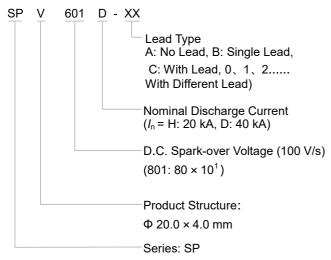


Description

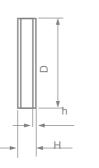
Gas Discharge Tube (GDT) is a single-gap or multi-gap switching overvoltage protection device. Under normal circumstances, the GDT is in a high-impedance state; when suffer a surge, the GDT will change from a highimpedance state to a low-impedance state, and release the surge energy to the ground, reducing the residual voltage of the circuit, thereby protecting the equipment circuit or protect the human body from the hazards of transient overvoltage. GDT is formed by hightemperature sealing of metal electrodes, metallized ceramics, inert gas or other mixed gases.

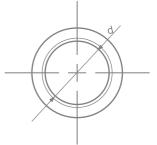
Agency Information

Agency Symbol	Standards	The File No. and certification No. obtained by SETsafe SETfuse
A1 ®	UL1449	On-going
c AV ®	UL1449	On-going


Features

- Fast Response
- Stable Performance Over Surface Life
- High Current Rating
- Low Capacitance
- High Insulation Resistance
- RoHS & REACH Compliant


Applications


- Class I 、 Class II and SPD
- N-PE Mode Protection In AC Power

Part Numbering System

Dimensions (mm)

D	d	Н	h
Φ20.0 ± 0.5	Φ10.5	4.0 ± 0.5	0.5

Notes: May increase each kind of connect mode according to the customer different demand.

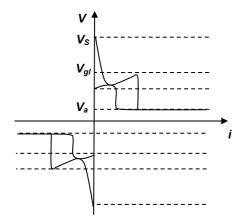
Reminder:

Part numbering system in the datasheet is only for selecting correct parameter and product features. Before placing order, please contact us for specifications and use the part number and product code in the specifications to place order to ensure the part is correct. Product code is the unique indentification.

Specifications

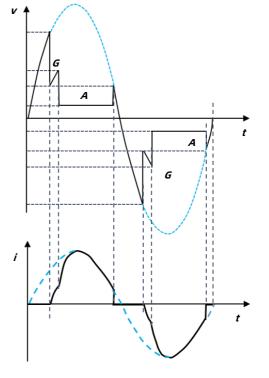
Model		SPV351D - XX	SPV601D - XX	SPV801D - XX		
Category	Category		II	II	II	Units
Application		N - PE	N - PE	N - PE		
Nominal D.0	C. Spark-over V	oltage (100 V/s)	350	600	800	V
D.C. Spark-	over Voltage (1	00 V/s)	280 ~ 420 480 ~ 720		800 ~ 1200	V
Impulse Spa	ark-over Voltage	e @1 kV/µs	< 900	< 1400	< 1600	V
GB/T18802.311				·		·
Nominal Impulse Discharge Current @8/20 µs I _n			40	40 40		kA
Maximum Impulse Discharge Current @8/20 μs I _{max}			80	80	80	kA
Class II (C	omply with IEC	C61643-11)				
Nominal Dis	scharge Current	@8/20 μs <i>I</i> n	40	40	40	kA
Maximum Discharge Current @8/20 µs I _{max}		60	60	60	kA	
Insulation Resistance (100 VDC)		> 1000	> 1000	> 1000	MΩ	
Capacitance at 100 kHz		< 10	< 10	< 10	pF	
	UL1449	RJ ®	0	0	0	
Agency Approvals	UL1449	c RL ®	0	0	0	
	TUV		0	0	0	

Note:


1. The above parameters based on ITU-T K12 & IEC61643.311、IEC61643.11 standards.

2. Connect mode according to the customer different demand.

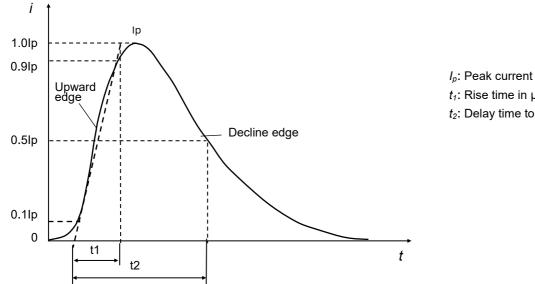
3. "•" means GDT has gained the certification, "o" means GDT is no certification.



Electrical Characteristics

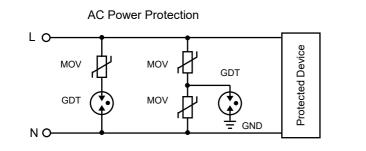
Relationship between Current and Voltage

- Vs : Spark-over Voltage
- Vgl: Glow Voltage
- Va : Arc Voltage
- G : Glow Mode
- A : Arc Mode

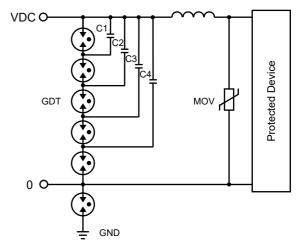

Time Variation Patterns of Voltage and Current

Reference Curve for Spark-over Voltage (Refer to 230 VDC)

U V 1 kV/µs 1000 100 V/µs 800 600 400 100 V/s 200 0 2 4 6 8 µs 0 1 2 3 s t **Dynamic Response** Static Response Impulse Spark-over Voltage D.C. Spark-over Voltage (100 V/s) (100 V/µs,1 kV/µs)



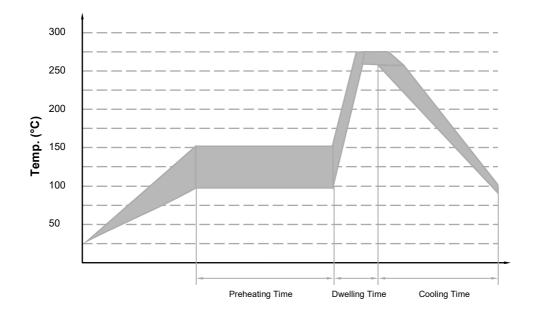
Curve for Impulse Discharge Current (For Reference Only)



 t_1 : Rise time in μ s t_2 : Delay time to half value in μ s

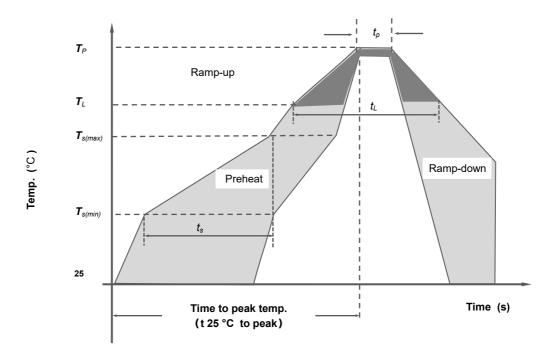
Application Example (For Reference Only)

DC Power Protection



Recommended Hand-soldering Parameters (For Reference Only)

Items	Condition
Soldering Iron Temperature	350 °C (Max.)
Soldering Time	4 s (Max.)
Space between soldering point and product body	According to the guidance method


Wave Soldering Parameters (For Reference Only)

ltem	Temp. (°C)	Time (s)
Preheating	90 to 150	< 150
Dwelling	255 to 280	3 to 10

Reflow Soldering Parameters (For Reference Only)

	Reflow Condition	Pb-Free Assembly
	Temp. Min <i>T_{s(min)}</i>	150 °C
Preheat	Temp. Max <i>T_{s(max)}</i>	200 °C
	Time (Min to Max) <i>t</i> s	(60 to 180) s
Average ramp	up rate (Liquidus Temp. (T_L) to peak)	3 °C / second max
$T_{s(max)}$ to T_L Ra	mp-up Rate	5 °C / second max
Reflow	Temp. (T_L) (Liquidus)	217 °C
Reliow	Temp. (<i>t</i> _{<i>L</i>})	(60 to 150) s
Peak Temp. (<i>T_P</i>)		(255 to 260) °C
Time within 5 °C of actual peak Temp. (t_P)		(10 to 30) s
Ramp-down Ra	ite	6 °C / second max
Time 25 °C to p	peak Temp. (<i>T_P</i>)	8 minutes max
Do not exceed		260 °C

Packaging Information

PE Box Package

Item	PE Box	Inner Box	Carton
Dimensions (mm)	225 × 205 × 16	230 × 210 × 98	440 × 250 × 250
Quantity (PCS)	48	240	960

Notes: Packaging dimensions and quantity are for reference only.

The above picture packaging is only suitable for type A products. For the other appearance and packaging mode and quantity, please refer to the specification.

Glossary

Item	Description
	D.C.Spark-over Voltage
Vs	The voltage at which the GDT sparks over with slowly increasing d.c. voltage.
	— (IEC 61643-311)
	Impulse Spark-over Voltage
v	The highest Voltage which appears across the terminals of a GDT in the period between the application of an impulse of given wave-shape and the time when current begins to flow.
	— (ITU-T K.12)
	Arc Voltage
Va	Voltage drop across the GDT during arc current flow.
	— (IEC 61643-311)
	Glow Voltage
$V_{\rm gl}$	The peak value of the voltage drop across the GDT when a glow-current is flowing, It is sometimes called the
- 91	glow mode voltage.
	— (ITU-T K.12)
	8/20 Current Impulse
8/20 µs	Current impulse with a nominal virtual front time of 8 μ s and a nominal time to half-value of 20 μ s.
	— (IEC 61643-11)
	10/350 Current Impulse
10/350 µs	Current impulse with a nominal virtual front time of 10 μs and a nominal time to half-value of 350 μs. — (IEC 61643-11)
	1.2/50 Voltage Impulse
1.2/50 µs	Voltage impulse with a nominal virtual front time of 1.2 μ s and a nominal time to half-value of 50 μ s.
	— (IEC 61643-11)
	Alternating Discharge Current
1	The r.m.s. value of an approximately sinusoidal alternating current passing through the gas discharge tube.
	— (ITU-T K.12)
	Nominal Discharge Current
<i>I</i> n	Crest value of the current through the GDT having a current waveshape of 8/20 μ s.
	— (IEC 61643-11)
	Maximum Discharge Current
I _{max}	Crest value of a current through the GDT having an 8/20 µs waveshape and magnitude according to the manu-
mus	facturers specification. I_{max} is equal to or greater than I_n .
	— (IEC 61643-11)

l _{imp}	Impulse Discharge Current Crest value of a discharge current through the SPD with specified charge transfer Q and specified energy W/R in the specified time. — (IEC 61643-11)
U _p	Voltage Protection Level Maximum voltage to be expected at the SPD terminals due to an impulse stress with defined voltage steepness and an impulse stress with a discharge current with given amplitude and waveshape. — (GB 18802.11、IEC 61643-11)
Uc	maximum r.m.s. voltage Which may be continuously applied to the SPD's mode of protection. — (IEC 61643-11)
lf	follow current Peak current supplied by the electrical power system and flowing through the SPD after a discharge current impulse. — (IEC 61643-11)
class I	class I tests Tests carried out with the impulse discharge current limp, with an 8/20 current impulse with a crest value equal to the crest value of limp, and with a 1.2/50 voltage impulse. — (IEC 61643-11)
class II	class II tests Tests carried out with the nominal discharge current I_n , and the 1.2/50µs voltage impulse. — (IEC 61643-11)

SET safe | SET fuse

Usage

- 1. Do not operate GDT in power supply networks, whose maximum operation voltage exceeds the minimum spark-overvoltage of the GDT.
- 2. The GDT may become hot in the event of longer periods of current stress (burn risk). In the event of overload the connectors may fail or the component may be destroyed.

10

- 3. If the contacts of GDT are defective, current load can cause sparks and loud noises.
- 4. When air pressure is from 55 kPa to 106 kPa. The relative altitude shall be +5000 m to -500 m.

Replacement

The GDT is a non-repairable product. For safety sake, please use equivalent GDT for replacement.

Storage

The packaged GDT should be placed in a dry, ventilation and non-corrosive environment.

Installation Position

Do not install the GDT in a touchable position.

Mechanical Stress

Do not take violent action such as knocking when assembling, to avoid product failure.

Gas	G
	C
Disch	
<u>a</u>	
rge .	
Tuk	
<u> </u>	

Model

SET safe SET fuse

SPV Series

4500 4000 3600 3000 2500 2000 DC Spark-over Voltage (V) 1500 1200 1000 800 SU SD(-SMD) SW SY SX SN SS SM 600 SW SX SY SN SU SS SD(-SMD) SM 470 SW SX SY SN SU SS SD(-SMD) SM 420 SU SS SW SX SY SN SD(-SMD) SM 400 SZ SW SX SY SN 350 SW SX SY SN SU SS SD(-SMD) SM 300 SZ SW SX SY SN 250 SU SS SD(-SMD) SM 230 SZ SW SX SY SN SU SS SD(-SMD) SM 200 SZ SW SX SY SN 150 SZ SW SX SY SN SU SS SD(-SMD) SM 90 SY SU SD(-SMD) SZ SW SX SN SS SM 75 SW SX SY SN SS SD(-SMD) SM 70 SN SS SD(-SMD) SM Size (mm) 3.2 × 1.6 × 1.6 3.2 × 2.5 × 2.5 4.5 × 3.2 × 2.7 4.0 x 3.5 x 3.5 4.2 × 5.0 × 5.0 $5.0 \times 5.4 \times 5.4$ 4.2 x 6.2 × 6.2 Φ5.0 × 5.0 Ф9.3 × 6.0

Gas Discharge Tube (GDT) Features & Model List Overview

Product Structure

/_n (8/20 μs) (kA) Impulse Discharge Curren

0.5

1

1/2

3

Ē

5

20

5

5/10

SMD

5

 \rightarrow

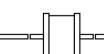
Gas	G
	Ū
Discharge	-
Ch.	
arç	
ge	
ube	

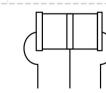
SET safe SET fuse

SPV Series

Produc Structur	at l							
n (8/20 µS) Dulse Discharge) (kA) _{le Current}	10 / 20	20	3	5 / 10	5	10 / 20	
Size (mn	m)	Ф8.0 × 2.2	6.0 × 8.3 × 8.3	6.8 x 3.5 x 3.5	7.6 × 5.0 × 5.0	7.8 x 5.0 x 5.0	10.0 x 8.3 x 8.3	
	70	0	SC	0	0	0	0	
	75		SC		TZ(-SMD)			
	90	SK	SC	TS	TZ(-SMD)		TR(-SMD)	
	150		SC	TS	TZ(-SMD)		TR(-SMD)	
	200		0	TS	TZ(-SMD)		0	
	230		SC	TS	TZ(-SMD)	TY	TR(-SMD)	
	250		SC	0		TY		
B	300	0	0	TS	0	0	0	
S	350	SK	SC		TZ(-SMD)	TY	TR(-SMD)	
oar	400	<u>о</u>	0	0	ाट(-SMD)	0	ा स(-SMD)	
Å Å	420	SK	sc	TS TS	TZ(-SMD) TZ(-SMD)	TY	TR(-SMD)	
ve	600 470	SK	SC SC	TS	TZ(-SMD)	TY	TR(-SMD) TR(-SMD)	
ž	800	SK	SC	<u>ं</u>		<u>ं</u>		
olt	1000	SK	0					
age	1200	0	0					
0	1500		0					
	2000		0					
	2500		0					_
	3000		0					
	3600		0					
;	4000		0					
	1000							

SMD

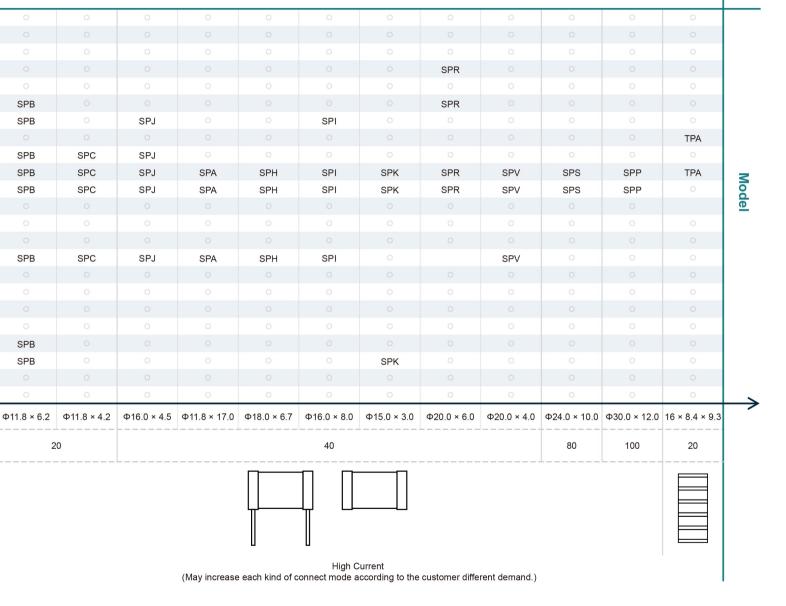

Gas Discharge Tube (GDT) Features & Model List Overview


Gas Discharge Tube (GDT) Features & Model List Overview

(8/20 µS) (kA) Ise Discharge Current	5	3 / 5 / 10	5 / 10 / 20	5 / 10	10	10 / 20							
Size(mm)	Ф5.0 × 5.0	Ф5.5 × 6.0	Ф8.0 × 6.0	7.6 × 5.0 × 5.0	Ф6.0 × 8.0	Ф8.0 × 10.0							
70	SD(-L)	SF	SE	0	0	0							
150 90 75	SD(-L) SD(-L) SD(-L)	SF SF SF SF SF SF SF SF SF	SE SE SE SE SE SE SE SE SE SE	TZ(-L) TZ(-L) TZ(-L) TZ(-L) TZ(-L) TZ(-L) TZ(-L) TZ(-L) TZ(-L)	TB O TB O TB TB TB TB C C	TR(-L) TR(-L) TR(-L) TR(-L) TR(-L) TR(-L) TR(-L) TR(-L) TR(-L)							
200													
230	SD(-L)												
250	SD(-L) SD(-L) SD(-L) SD(-L)												
O 350 O 300													
350													
400													
는 420													
470	SD(-L) SD(-L)	SF	SE	TZ(-L) TZ(-L)	тв	TR(-L) TR(-L)							
5 800 5 600	SD(-L)	SF	SE										
1000	000 0 500 0 500 0 500 0 200 0 000 0	SF SF SF SF SF SF SF SF	SE SE SE SE SE SE SE SE										
2000 100 1000 1													
								2500					
								3000					
3600													
4000													
4500									SF	SE	0		

DIP

Product Structure


GDT Gas Discharge Tube

SPV Series

 $\frac{1}{3}$

GDT Gas Discharge Tube

Gas Discharge Tube (GDT) Features & Model List Overview

SPC

SPC

SPC

SPC

DC Spark-over Voltage (V)

4500

4000 3600 3000

2500

2000

1500

1400

1000

800

600

300 250

230 200 150

90

75 70

Size (mm)

In (8/20 μs) (kA) Impulse Discharge Curren

Product Structure SPB

SPB

SPB

SPB

SPB

SPB

SPB

SPB

20

+86 592-571-5838

www

.SETsafe.com

www.SETfuse.com

E-mail : sales@SETfuse

.com

14

SPV Series

SET safe SET fuse